Specificity of E2F1, E2F2, and E2F3 in mediating phenotypes induced by loss of Rb.
نویسندگان
چکیده
The Rb/E2F pathway plays a critical role in the control ofcellular proliferation. Here, we report that E2F1, E2F2, and E2F3 make major individual contributions toward the in vivo phenotypic consequences of Rb deficiency. In the developing lens of Rb(-/-) embryos, loss of E2F1, E2F2, or E2F3 reduces the unscheduled proliferation of fiber cells, with the loss of E2F3 having the most pronounced effect. In Rb-deficient retinas, all three E2Fs contribute equally to the ectopic proliferation of postmitotic neuronal cells. In contrast, E2F1 is unique in mediating apoptosis in both Rb(-/-) lenses and retinas. In the central nervous system, loss of E2F1 or E2F3 can almost completely eliminate the ectopic DNA replication and apoptosis observed in Rb(-/-) embryos, and loss of E2F2 partially reduces the unscheduled DNA replication and has no effect on apoptosis. These results provide clear evidence for functional specificity among E2Fs in the control of Rb-dependent proliferation and apoptosis in a tissue-specific manner.
منابع مشابه
Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis.
Deregulation of the Myc pathway and deregulation of the Rb pathway are two of the most common abnormalities in human malignancies. Recent in vitro experiments suggest a complex cross-regulatory relationship between Myc and Rb that is mediated through the control of E2F. To evaluate the functional connection between Myc and E2Fs in vivo, we used a bitransgenic mouse model of Myc-induced T cell l...
متن کاملClinical performance of E2Fs 1-3 in kidney clear cell renal cancer, evidence from bioinformatics analysis
Extensive research on the E2F transcription factor family has led to numerous insights that E2Fs were involved not only in proliferation and tumorigenesis but also in apoptosis and differentiation. In the present study, we analyzed the differential expression of E2Fs1-3 genes, and also evaluated the impact of E2Fs 1-3 genes expression on clinical outcome from the Cancer Genome Atlas (TCGA) data...
متن کاملDivergent siblings: E2F2 and E2F4 but not E2F1 and E2F3 induce DNA synthesis in cardiomyocytes without activation of apoptosis.
Proliferation of mammalian cardiomyocytes ceases around birth when a transition from hyperplastic to hypertrophic myocardial growth occurs. Previous studies demonstrated that directed expression of the transcription factor E2F1 induces S-phase entry in cardiomyocytes along with stimulation of programmed cell death. Here, we show that directed expression of E2F2 and E2F4 by adenovirus mediated g...
متن کاملInhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rb-E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCaP cells: role in prostate cancer prevention.
Several studies have identified silibinin as an anticarcinogenic agent. Recently, we showed that silibinin inhibits cell growth via G1 arrest, leading to differentiation of androgen-dependent human prostate carcinoma LNCaP cells (X. Zi and R. Agarwal, Proc. Natl. Acad. Sci. USA, 96: 7490-7495,1999). Here, we extend this study to assess the effect of silibinin on total retinoblastoma protein (Rb...
متن کاملA role for 14-3-3 tau in E2F1 stabilization and DNA damage-induced apoptosis.
Genotoxic stress triggers apoptosis through multiple signaling pathways. Recent studies have demonstrated a specific induction of E2F1 accumulation and a role for E2F1 in apoptosis upon DNA damage. Induction of E2F1 is mediated by phosphorylation events that are dependent on DNA damage-responsive protein kinases, such as ATM. How ATM phosphorylation leads to E2F1 stabilization is unknown. We no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research
دوره 13 5 شماره
صفحات -
تاریخ انتشار 2002